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This lecture 

 Some models 

 Channel capacity 
  converse 



some channel models 

Input X         P(y|x)  output Y 

 

            transition probabilities  

memoryless:  

- output at time i depends only on input at time i 

- input and output alphabet finite 



channel capacity:  

  
I(X;Y) = H(X) - H(X|Y) = H(Y) –H(Y|X) (Shannon 1948) 

 

       H(X)           H(X|Y) 

 
   

 
 
notes:  
  capacity depends on input probabilities 
    because the transition probabilites are fixed 
       
 

channel 
X Y 

capacity)Y;X(Imax
)x(P





channel model: 
binary symmetric channel 

Error Source 

+ 

E 

X 

Output Input 

EXY 

E is the binary error sequence s.t.  P(1) = 1-P(0) = p 

X is the binary information sequence 

Y is the binary output sequence   

     1-p 

0              0 

       p 

1                   1 

       1-p 



burst error model 

Error Source 

Random error channel; outputs independent 

P(0) = 1- P(1);    

Burst error channel; outputs dependent 

Error Source 
P(0 | state = bad ) = P(1|state = bad ) = 1/2; 

P(0 | state = good ) = 1 - P(1|state = good ) = 0.999  

State info: good or bad 

good bad 

transition probability   
Pgb 

Pbg 

Pgg 
Pbb 



Interleaving: 

   Message   interleaver    channel         interleaver -1     message 

   encoder          decoder 

bursty 

„random error“ 

Note: interleaving brings encoding and decoding delay 

 
Homework: compare the block and convolutional interleaving w.r.t. delay 



Interleaving: block 

Channel models are difficult to derive: 

 - burst definition ? 

 - random and burst errors ? 

for practical reasons: convert burst into random error 

read in row wise 

 
  

transmit 

column wise 
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De-Interleaving: block 

read in column 
wise 
this row contains 1 error 
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row wise 



Interleaving: convolutional 

input sequence 0 

input sequence 1  delay of b elements 

    

input sequence m-1  delay of (m-1)b elements 

 

Example:b = 5, m = 3 
in 

out 



Class A Middleton channel model  

AWGN, σ 20  

… 

AWGN, σ2
1 

… 

AWGN, σ2
2 

Select channel k 
with probability Q(k) 

I and Q same variance 

I 

     Q 

I 

     Q 

Transition 
probability P(k) 

0 

 

1 

0 

 

1 



Example: Middleton’s class A 

Pr{ σ = σ(k) } = Q(k),  k = 0,1, · · · 
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A is the impulsive index 
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are the impulsive and Gaussian noise power 



Example of parameters 

 Middleton’s class A= 1; E = σ = 1;  σI /σG = 10-

1.5  

 

   k Q(k)   p(k)  (= transition probability ) 

   0 0.36   0.00 

   1 0.37  0.16 

   2 0.19  0.24 

   3 0.06  0.28 

   4 0.02  0.31 Average p = 0.124;   Capacity (BSC) = 0.457 



Example of parameters 

Middleton’s class A:  E = 1; σ = 1;  σI /σG = 10-3 

Transition 
probability P(k) 
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Example of parameters 

Middleton’s class A:  E = 0.01; σ = 1;  σI /σG = 10-3 

Transition 
probability P(k) 
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channel capacity: the BSC 

     1-p 

0              0 

       p 

1                   1 

       1-p 

X     Y 

I(X;Y) = H(Y) – H(Y|X) 

the maximum of H(Y) = 1 

  since Y is  binary  

H(Y|X) = h(p)  

  = P(X=0)h(p) + P(X=1)h(p)
  

Conclusion: the capacity for the BSC CBSC = 1- h(p) 
Homework: draw  CBSC , what happens for p > ½  



channel capacity: the Z-channel 

Application in optical communications 

0 

 

1 

0 (light on) 

 

1 (light off) 

p 

1-p 

X      Y 

H(Y) = h(P0 +p(1- P0 ) ) 

 

H(Y|X) = (1 - P0 ) h(p) 

 

For capacity,  

 maximize I(X;Y) over P0 P(X=0) = P0  



channel capacity: the erasure channel 

Application: cdma detection 

0 

 

 

1 

0 

 
E 

 

1 

1-e 

e 

 

 

e 

 
1-e 

 

X       Y 

I(X;Y) = H(X) – H(X|Y) 

    H(X) = h(P0 ) 

    H(X|Y) = e h(P0) 

 

Thus Cerasure = 1 – e    

(check!, draw and compare with BSC and Z) P(X=0) = P0  



channel models: general diagram 

x1 

x2 

xn 

y1 

y2 

ym 

: 

: 

: 

: 

: 

: 

P1|1 

P2|1 P1|2 
P2|2 

Pm|n 

Input alphabet  X = {x1, x2, …, xn} 

Output alphabet Y = {y1, y2, …, ym} 

Pj|i = PY|X(yj|xi) 

 

In general: 

calculating capacity needs more 
theory 



clue: 

I(X;Y)  

 is convex  in the input probabilities 

 

 i.e. finding a maximum is simple 



Channel capacity 

Definition:  

The rate R  of a code is the ratio    , where 

 k is the number of information bits transmitted   

 in n  channel uses 

Shannon showed that: : 

 for R  C  

 encoding methods exist 

 with decoding error probability    0 

 

 

n

k



System design 

message 
estimate 

channel decoder 

n 

Code 
word in 

receive 

There are 2k code words of length n 

2k 

Code book 

Code book 



Channel capacity:  
 sketch of proof for the BSC 

Code: 2k binary codewords  where p(0) = P(1) = ½ 

Channel errors: P(0 1) = P(1  0) = p   

  i.e.  # error sequences  2nh(p)  

Decoder: search around received sequence for codeword 

  with  np differences 

space of 2n  binary sequences 



Channel capacity:  
 decoding error probability 

1. For t errors: |t/n-p|> Є   

 0 for n   

 (law of large numbers) 

2.   > 1 code word in region 
     (codewords random) 
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Channel capacity: converse 
 

For R > C the decoding error probability > 0 

k/n 

C 

Pe 



Converse: For a discrete memory less channel  

  

1 1 1 1
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Xi        Yi 

m              Xn            Yn                    m‘ 
encoder channel 

channel 

Source generates one  

out of 2k equiprobable  

messages 

decoder 

Let Pe = probability that m‘  m 

source 



converse R := k/n 

    Pe  1 – C/R - 1/k 

 Hence:  for large k, and R > C,   

   the probability of error Pe > 0  

k = H(M)  = I(M;Yn)+H(M|Yn) 
            Xn is a function of M              Fano 

        I(Xn;Yn) +1+ k Pe  

         nC +1+ k Pe  

1 – C n/k - 1/k      Pe 



Appendix: 

Assume:  

 binary sequence P(0) = 1 – P(1) = 1-p  

  t is the # of  1‘s  in the sequence 

Then n   ,  > 0 

 Weak law of large numbers   

  Probability ( |t/n –p| >  )  0 

 

i.e. we expect with high probability pn 1‘s  



Appendix: 

Consequence: 

 
n(p- ) <  t  < n(p + ) with high probability 
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A sequence in this set has probability  )p(nh2


